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Symmetric Matrix

0 A symmetric matrix is a matrix A such that AT = A. Such a
matrix is necessarily square. Its main diagonal entries are
arbitrary, but its other entries occur in pairs — on opposite sides
of the main diagonal.

0 -1 0 a b ¢

Symmetric: |1 %], |-1 5 8| b d e

0 8 -7 c e f
1 —4 0 5 4 3 2
Nonsymmetric: [; _03], -6 1 —4f, 4 3 2 1]
[0 -6 1. 3 2 1 0
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Eigenvectors of a Symmetric Matrix

Theorem

Orthogonality of Eigenvectors of a Symmetric Matrix Corresponding to Distinct
Eigenvalues. If 4 is symmetric, then any two eigenvectors from different eigenspace are

orthogonal.
Av1 = /11171
— T _
AUZ = szz = V1 Vy = 0
AMFA
Proof?
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Orthogonally Diagonalizable

Definition

A square matrix A is orthogonally diagonalizable if its eigenvectors are orthogonal
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Orthogonally Diagonalizable

Theorem

Ann X n matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

(=):
A=AT = A= QAQT, A = diag{dy,+, A}

(<)
A=AT € A=QAQ", A =diag{},-++,1,},0Q is orthogonal = QT = Q1

AT=(QAQ™H)T = (QAQT)T = QATQ"= QAQ"= 4
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Spectral Decomposition (complex and real)

Theorem

Suppose A € M, (R). Then there exists an orthogonal matrix U € M,,(R) and diagonal
matrix D € M, (R) such that

A=UDUT.

if and only if A is symmetric (i.e., A = AT).

Theorem

Suppose A € M, (C). Then there exists a unitary matrix U € M,,(C) and diagonal matrix D
€ M,,(C) such that

A=UDU".
if and only if A is normal (i.e., A*A = AA").
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Real eigenvalues

Theorem

All the eigenvalues of matrix A (a real symmetric matrix) are real.

Proof?
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Relationship between eigenvalue and pivot signs

Theorem

For a symmetric matrix the signs of the pivots are the signs of the eigenvalues.

number of positive pivots=number of positive eigenvalues

o We know that determinant of matrix is product of pivots.
o We know that determinant of matrix is product of eigenvalues.
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Conclusion: Spectral Theorem

The Spectral Theorem for Symmetric Matrices

An n X n symmetric matrix A has the following properties:

a. A has n real eigenvalues, counting multiplicities.

b. The dimension of the eigenspace for each eigenvalue A1 equals the multiplicity of A as a
root of the characteristic equation.

c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to
different eigenvalues are orthogonal.

d. A is orthogonally diagonalizable.
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Spectral Decomposition (Real)

S=QAQ"

stretchine Orthogonal

Orthogonal
rotation

rotation
3




Visualization of Spectral Decomposition




Important Note

o Spectral Decomposition is nice and pretty, but
with loss of generality:

Real Field: For square and symmetric matrices!
Complex Field: For square and normal matrices!

For General?? SVDIlI
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Quadratic Form

a0 A quadratic form is any homogeneous polynomial of degree two in
any number of variables. In this situation, homogeneous means that

all the terms are of degree two.

o For example, the expression 7x;x, + 3x,x, is homogeneous, but the
expression x; — 3x41X, is not.

The square of the distance between two points in an inner—product space
is a quadratic form.
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Quadratic Form

« Given a square symmetric matrix A € R™"™ and a vector x € R", the scalar
value xT Ax is called a quadratic form.

n n n

n
.X'TAX = in(AX)i = le- ZAU'XJ = 2 Al-jxl-xj
—1 ;

n
i=1 i=1 = i=1 j=1

O A gquadratic form on R" is a function Q defined on R™ whose value at a
vector x in R™ can be computed by an expression of the form Q(x) = xT Ax,
where 4 is an n X n symmetric matrix. The matrix A is called the matrix of
the quadratic form.

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 16



Quadratic Form

Definition

» Suppose X is a vector space over R. Then a function Q: X — R is called
a quadratic form if there exists a bilinear form f: X x X — R such that:

Q(x) = f(x,x) forall x e X

Example

Simplest example of a nonzero quadratic form is ...
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Quadratic Form

Example

: _ |4 0
Without cross-product term: A= 0 3
With cross-product term: A= [ 32 —72]
Tip

» Quadratic forms are easier to use when they have no cross-product terms; that is, when
the matrix of the quadratic form (A) is a diagonal matrix.
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Quadratic Form

Example

For x in R3, let Q(x) = 5x2 + 3x2 + 2x% — x;x, + 8x,x5. Write this quadratic form as xT Ax.
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Change of Variable in QF

* If x represents a variable in R", then a change of variable is an
equation of the form:

x = Py y=P lx

or equivalently,

where P is an invertible matrix and y is a new variable vector in R™.

Note

y can be regarded as the coordinate vector of x relative to the basis of R" determined by
the columns of P.
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Change of Variable in QF

0 If the change of variable is made in a quadratic form xT Ax, then

xTAx = (Py)TA(Py) = y"PTAPy = y"(PTAP)y

« The new matrix of the quadratic form is PTAP.

« A Is symmetric, so there is an orthogonal matrix P such
that PTAP is a diagonal matrix D.

 Then the quadratic form x Ax becomes y’ Dy. There is
No cross-product.
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Quadratic Form

o If A and B are n X n real matrices connected by the relation

1
Bzz(A‘FAT)

then the corresponding quadratic forms of A and B are identical, and
B is symmetric
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Classifying Quadratic Forms

O When A4 is an n X n matrix, the quadratic form Q(x) = xT Ax is a real-
valued function with domain R".

point (xq1,X,,3) where 3 = Q(x)

(@) z = 3x2 + 7x2 (b) z = 3x2 (€) z =3x% —7x3 (d) z = —3x2 — 7x32
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Classifying Quadratic Forms

« A symmetric matrix A € S™ is positive definite (PD) if for all non
zero vectors A € R™, x’Ax > 0. This is usually denoted A > 0, and
often times the set of all positive definite matrices is denoted S%,.

« A symmetric matrix A € S" is positive semidefinite (PSD) if for all
vectors xTAx > 0. This is written A > 0, and the set of all positive
semidefinite matrices is often denoted S .

« Likewise, a symmetric matrix A € $" is negative definite (ND),
denoted A < 0 if for all non-zero x € R", xT Ax < 0.

« Similarly, a symmetric matrix A € S"™ is negative semidefinite
(NSD), denoted A < 0 if for all x € R", xTAx < 0.

* Finally, a symmetric matrix A € S™ is indefinite, if it is neither
positive semidefinite nor negative semidefinite; i.e., if there exists

x1, %, € R™ such that x! Ax; > 0 and x! Ax, < 0.
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Classifying Quadratic Forms

Definition Q(x) = xTAx
A quadratic form Q is:

 positive definite if Q(x) > 0 for all x # 0;

* negative definite if Q(x) < 0 for all x # 0;

* indefinite if Q(x) assumes both positive and negative values;

 positive semidefinite if Q(x) = 0 for all x;

* negative semidefinite if Q(x) < 0 for all x;

a; 0 0
. [l O a o
O For diagonal matrix A = N = xTAx = a;x? + ayx3 + - + a,x2.
0 0 b an
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Geometric Interpretation

o Q(x) = xTAx

_ (Ax).x
a0 = arccos(p )
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Characterization of Positive Definite Matrices

Suppose A € M, (FF) is self-adjoint (A* = A).. The following are equivalent:

a) A is positive definite.
b)  All of the eigenvalues of A are strictly positive.
c) There is an invertible matrix B € M, (F) such that A = B*B

d  There is a diagonal matrix D € M, (R) with strictly positive diagonal entries
and a unitary matrix U € M, (F) such that A = UDU".

You can extend these facts to other categories!
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Characterization of Positive Semidefinite Matrices

Suppose A € M, (FF) is self-adjoint (A* = A). The following are equivalent:

a) A is positive semidefinite.

b)  All of the eigenvalues of A are non—negative.
c) There is a matrix B € M,,(IF) such that A = B*B, and

d  There is a diagonal matrix D € M,,(R) with non—negative diagonal entries and

a unitary matrix U € M, (F) such that A = UDU".
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Quadratic Form

Theorem

Let A be an n X n symmetric matrix. Then a quadratic form xT Ax is:
» positive definite if and only if the eigenvalues of A are all positive;

* negative definite if and only if the eigenvalues of A are all negative;
 indefinite if and only if A has both positive and negative eigenvalues;

O How about semidefinite?
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Positive Definite Matrices

Five tests to see whether a matrix is positive definite or not:

1. xTAx > 0 for all x (other than zero—vector)
2. If A is positive definite, A = STS (S must have independent columns.)

3. All eigen values are greater than 0

4. Sylvester’ s Criterion: All upper left determinants must be > 0.

5. Every pivot must be > 0

Note

A positive definite matrix A has positive eigenvalues, positive pivots, positive
determinants, and positive energy v’ Av for every vector v.A = STS is always positive
definite if S has independent columns.
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Positive Definite Matrices

For positive definite matrices we had:

« If A is positive definite, A = STS (S must have independent columns.)

Theorem

If S is positive definite S = ATA (A must have independent columns): A7 A is
positive definite iff the columns of A are linearly independent.

o Proof?
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Positive Definite Matrices

For positive definite matrices we had:

« All eigen values are greater than O
Theorem

If a matrix is positive definite, then its eigenvalues are positive.

O  Proof?
Theorem
If a matrix has positive eigenvalues, then it is positive definite.

* Proof?
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Positive Definite Matrices

For positive definite matrices we had:

» Sylvester’s Criterion: All upper left determinants must be > 0.

—1‘ 0]

A=lI-1 2| -1
L0 -1 2

Theorem

If a matrix is positive definite, then it has positive determinant.

Proof?
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Sylvester’ s Criterion

Theorem

Then A is positive definite if and only if, for all 1 < k < n, the determinant of the top-left k x k
block of A is strictly positive.

Proof?
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Sylvester’ s Criterion for Positive Semidefinite Matrices

a A principal minor of a square matrix is the determinant of a
submatrix of A that is obtained by deleting some (or none) of its
rows as well as the corresponding columns.

O A matrix is positive semidefinite if and only if all of its principal
minors are non—negative.
:

o QU T

B =

O T

are a,d, f,det(B) itself, as well as
det( : Z]) — ad — |b|? det([‘; ]Cc]) = af —|c|? det( ‘; ]‘i]) —df —|el?
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Pivots & Positive Definite Matrices

Theorem

If a matrix has positive pivots, then it is positive definite.

Proof?
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Properties

Important

« If A is positive definite, A~! will also be positive definite.

* If A and B are positive definite matrices, A + B will also be a positive
definite matrix.

» Positive definite and negative definite matrices are always full rank, and
hence, invertible.

« For A € R™™ gram matrix is always positive semidefinite. Further, if m
> n (and we assume for convenience that A is full rank), then gram
matrix is positive definite.



Properties

Important

Suppose A, B € M, are positive (semi)definite, P € M, ,,, is any matrix, and ¢ > 0
is real scalar. Then

a) A+ B is positive (semi)definite.
b) cA is positive (semi)definite.
c) AT is positive (semi)definite, and

d) P*AP is positive semidefinite. Furthermore, if A is positive definite then P*AP is
positive definite if and only if rank(P) = m.
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Gram Matrix

Gram(A) : ATA

symmetric

non—negative eigenvalues
real eigenvalues

orthonormal eigenvectors

I I N W

positive semi—definite

Proof?
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