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Symmetric Matrix
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❑ A symmetric matrix is a matrix 𝐴 such that 𝐴𝑇 = 𝐴. Such a 
matrix is necessarily square. Its main diagonal entries are 
arbitrary, but its other entries occur in pairs – on opposite sides 
of the main diagonal.

Symmetric Matrix
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Symmetric: 1 0
0 −3

,
0 −1 0
−1 5 8
0 8 −7

, 

𝑎 𝑏 𝑐
𝑏 𝑑 𝑒
𝑐 𝑒 𝑓

Nonsymmetric:
1 −3
3 0

,
1 −4 0
−6 1 −4
0 −6 1

, 
5 4 3 2
4 3 2 1
3 2 1 0



Proof?

Eigenvectors of a Symmetric Matrix 
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Theorem
Orthogonality of Eigenvectors of a Symmetric Matrix Corresponding to Distinct 
Eigenvalues. If 𝐴 is symmetric, then any two eigenvectors from different eigenspace are 
orthogonal. 

ቑ

𝐴𝑣1 = 𝜆1𝑣1
𝐴𝑣2 = 𝜆2𝑣2
𝜆1 ≠ 𝜆2

⇒ 𝑣1
𝑇𝑣2 = 0



Orthogonally Diagonalizable
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Definition

A square matrix A is orthogonally diagonalizable if its eigenvectors are orthogonal



Orthogonally Diagonalizable
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Theorem

An 𝑛 × 𝑛 matrix 𝐴 is orthogonally diagonalizable if and only if 𝐴 is a symmetric matrix.

(⇒):
𝐴 = 𝐴𝑇 ⇒ 𝐴 = 𝑄Λ𝑄𝑇 , Λ = 𝑑𝑖𝑎𝑔{𝜆1, ⋯ , 𝜆𝑛}

(⇐):
𝐴 = 𝐴𝑇 ⇐ 𝐴 = 𝑄Λ𝑄𝑇 , Λ = 𝑑𝑖𝑎𝑔 𝜆1, ⋯ , 𝜆𝑛 , 𝑄 𝑖𝑠 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 ⇒ 𝑄𝑇 = 𝑄−1

𝐴𝑇=(𝑄Λ𝑄−1)𝑇 = (𝑄Λ𝑄𝑇)𝑇 = 𝑄Λ𝑇𝑄𝑇= 𝑄Λ𝑄𝑇= 𝐴



Spectral Decomposition (complex and real)

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 7

Theorem

Suppose 𝐴 ∈ 𝑀𝑛 ℝ . Then there exists an orthogonal matrix 𝑈 ∈ 𝑀𝑛 ℝ and diagonal

matrix 𝐷 ∈ 𝑀𝑛 ℝ such that

𝐴 = 𝑈𝐷𝑈𝑇 .

if and only if 𝐴 is symmetric (i.e., 𝐴 = 𝐴𝑇).

Suppose 𝐴 ∈ 𝑀𝑛 ℂ . Then there exists a unitary matrix 𝑈 ∈ 𝑀𝑛 ℂ and diagonal matrix 𝐷

∈ 𝑀𝑛 ℂ such that

𝐴 = 𝑈𝐷𝑈∗.

if and only if 𝐴 is normal (i.e., 𝐴∗𝐴 = 𝐴𝐴∗).

Theorem



Real eigenvalues
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Theorem

All the eigenvalues of matrix A (a real symmetric matrix) are real.

Proof?



Relationship between eigenvalue and pivot signs
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Theorem

For a symmetric matrix the signs of the pivots are the signs of the eigenvalues. 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑖𝑣𝑜𝑡𝑠=𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠

o We know that determinant of matrix is product of pivots.
o We know that determinant of matrix is product of eigenvalues.



Conclusion: Spectral Theorem
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The Spectral Theorem for Symmetric Matrices

An 𝑛 × 𝑛 symmetric matrix 𝐴 has the following properties:

a. 𝐴 has 𝑛 real eigenvalues, counting multiplicities.

b. The dimension of the eigenspace for each eigenvalue 𝜆 equals the multiplicity of  𝜆 as a 

root of the characteristic equation.

c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to 

different eigenvalues are orthogonal.

d. 𝐴 is orthogonally diagonalizable.



Spectral Decomposition (Real)
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Visualization of Spectral Decomposition  
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❑ Spectral Decomposition is nice and pretty, but 
with loss of generality:

Real Field: For square and symmetric matrices!
Complex Field: For square and normal matrices!

For General?? SVD!!!

Important Note

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 13



Quadratic Form
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❑ A quadratic form is any homogeneous polynomial of degree two in 
any number of variables. In this situation, homogeneous means that 
all the terms are of degree two. 

o For example, the expression 7𝑥1𝑥2 + 3𝑥2𝑥4 is homogeneous, but the 
expression 𝑥1 − 3𝑥1𝑥2 is not. 

o The square of the distance between two points in an inner-product space 
is a quadratic form. 

Quadratic Form
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❑ A quadratic form on ℝ𝑛 is a function 𝒬 defined on ℝ𝑛 whose value at a 
vector 𝑥 in ℝ𝑛 can be computed by an expression of the form 𝒬 𝑥 = 𝑥𝑇𝐴𝑥, 
where 𝐴 is an 𝑛 × 𝑛 symmetric matrix. The matrix 𝐴 is called the matrix of 
the quadratic form.

Quadratic Form
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• Given a square symmetric matrix 𝐴 ∈ ℝ𝑛×𝑛 and a vector 𝑥 ∈ ℝ𝑛, the scalar 
value 𝑥𝑇𝐴𝑥 is called a quadratic form.

𝑥𝑇𝐴𝑥 = 

𝑖=1

𝑛

𝑥𝑖 𝐴𝑥 𝑖 = 

𝑖=1

𝑛

𝑥𝑖 

𝑗=1

𝑛

𝐴𝑖𝑗𝑥𝑗 = 

𝑖=1

𝑛



𝑗=1

𝑛

𝐴𝑖𝑗𝑥𝑖𝑥𝑗



Quadratic Form
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Definition

• Suppose 𝒳 is a vector space over ℝ. Then a function 𝒬: 𝒳 → ℝ is called 

a quadratic form if there exists a bilinear form 𝑓: 𝒳 × 𝒳 → ℝ such that: 

𝒬 𝑥 = 𝑓(𝑥, 𝑥) for all 𝑥 ∈ 𝒳

Example

Simplest example of a nonzero quadratic form is …



Quadratic Form
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Example

Without cross-product term: 

With cross-product term: 

𝐴 =
4 0
0 3

𝐴 =
3 −2
−2 7

Tip

• Quadratic forms are easier to use when they have no cross-product terms; that is, when 

the matrix of the quadratic form (A) is a diagonal matrix.



Quadratic Form
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Example

For 𝑥 in ℝ3, let 𝒬 𝑥 = 5𝑥1
2 + 3𝑥2

2 + 2𝑥3
2 − 𝑥1𝑥2 + 8𝑥2𝑥3. Write this quadratic form as 𝑥𝑇𝐴𝑥.



or equivalently,

Change of Variable in QF
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𝒙 = 𝑃𝒚

• If 𝑥 represents a variable in ℝ𝑛, then a change of variable is an 
equation of the form:

𝒚 = 𝑃−1𝒙

where 𝑃 is an invertible matrix and 𝒚 is a new variable vector in ℝ𝑛.

Note

𝒚 can be regarded as the coordinate vector of 𝒙 relative to the basis of ℝ𝑛 determined by 

the columns of 𝑃.



❑ If the change of variable is made in a quadratic form 𝑥𝑇𝐴𝑥, then

Change of Variable in QF
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𝑥𝑇𝐴𝒙 = 𝑃𝒚 𝑇𝐴 𝑃𝒚 = 𝒚𝑇𝑃𝑇𝐴𝑃𝒚 = 𝒚𝑇 𝑃𝑇𝐴𝑃 𝒚

• The new matrix of the quadratic form is 𝑃𝑇𝐴𝑃.

• 𝐴 is symmetric, so there is an orthogonal matrix 𝑃 such 
that 𝑃𝑇𝐴𝑃 is a diagonal matrix 𝐷.

• Then the quadratic form 𝒙𝑇𝐴𝒙 becomes 𝒚𝑇𝐷𝒚. There is 
no cross-product.



❑ If 𝐴 and 𝐵 are 𝑛 × 𝑛 real matrices connected by the relation

𝐵 =
1

2
𝐴 + 𝐴𝑇

then the corresponding quadratic forms of A and B are identical, and 
B is symmetric 

Quadratic Form

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 22



❑ When 𝐴 is an 𝑛 × 𝑛 matrix, the quadratic form 𝒬 𝑥 = 𝑥𝑇𝐴𝑥 is a real-
valued function with domain ℝ𝑛.

point (𝑥1, 𝑥2, 𝓏) where 𝓏 = 𝒬 𝑥

Classifying Quadratic Forms
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(a) 𝓏 = 3𝑥1
2 + 7𝑥2

2 (b) 𝓏 = 3𝑥1
2 (c) 𝓏 = 3𝑥1

2 − 7𝑥2
2 (d) 𝓏 = −3𝑥1

2 − 7𝑥2
2



Classifying Quadratic Forms
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• A symmetric matrix 𝐴 ∈ 𝕊𝑛 is positive definite (PD) if for all non 
zero vectors 𝐴 ∈ ℝ𝑛, 𝑥𝑇𝐴𝑥 > 0. This is usually denoted 𝐴 ≻ 0, and 
often times the set of all positive definite matrices is denoted 𝕊++

𝑛 .

• A symmetric matrix 𝐴 ∈ 𝕊𝑛 is positive semidefinite (PSD) if for all 
vectors 𝑥𝑇𝐴𝑥 ≥ 0. This is written 𝐴 ≽ 0, and the set of all positive 
semidefinite matrices is often denoted 𝕊+

𝑛 .

• Likewise, a symmetric matrix 𝐴 ∈ 𝕊𝑛 is negative definite (ND), 
denoted 𝐴 ≺ 0 if for all non-zero 𝑥 ∈ ℝ𝑛, 𝑥𝑇𝐴𝑥 < 0.

• Similarly, a symmetric matrix 𝐴 ∈ 𝕊𝑛 is negative semidefinite 
(NSD), denoted 𝐴 ≼ 0 if for all 𝑥 ∈ ℝ𝑛, 𝑥𝑇𝐴𝑥 ≤ 0.

• Finally, a symmetric matrix 𝐴 ∈ 𝕊𝑛 is indefinite, if it is neither 
positive semidefinite nor negative semidefinite; i.e., if there exists 
𝑥1, 𝑥2 ∈ ℝ

𝑛 such that 𝑥1
𝑇𝐴𝑥1 > 0 and 𝑥2

𝑇𝐴𝑥2 < 0.



Classifying Quadratic Forms
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Definition

A quadratic form 𝑄 is:
• positive definite if 𝑄 𝑥 > 0 for all 𝑥 ≠ 0;
• negative definite if 𝑄 𝑥 < 0 for all 𝑥 ≠ 0;
• indefinite if 𝑄 𝑥 assumes both positive and negative values;
• positive semidefinite if 𝑄 𝑥 ≥ 0 for all 𝑥;
• negative semidefinite if 𝑄 𝑥 ≤ 0 for all 𝑥;

𝑄 𝑥 = 𝑥𝑇𝐴𝑥

❑ For diagonal matrix 𝐴 =

𝑎1 0
0 𝑎2

⋯
0
0

⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑛

⇒ 𝑥𝑇𝐴𝑥 = 𝑎1𝑥1
2 + 𝑎2𝑥2

2 +⋯+ 𝑎𝑛𝑥𝑛
2.



❑ 𝑄 𝑥 = 𝑥𝑇𝐴𝑥

❑ 𝜃 = arccos(
𝐴𝑥 .𝑥

𝑥 𝐴𝑥
)

Geometric Interpretation
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Characterization of Positive Definite Matrices
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Suppose 𝐴 ∈ ℳ𝑛(𝔽) is self-adjoint (𝐴∗ = 𝐴).. The following are equivalent:

a) 𝐴 is positive definite.

b) All of the eigenvalues of 𝐴 are strictly positive.

c) There is an invertible matrix B ∈ ℳ𝑛(𝔽) such that 𝐴 = 𝐵∗𝐵

d) There is a diagonal matrix 𝐷 ∈ ℳ𝑛 ℝ with strictly positive diagonal entries 

and a unitary matrix 𝑈 ∈ ℳ𝑛(𝔽) such that 𝐴 = 𝑈𝐷𝑈∗.

You can extend these facts to other categories!



Suppose 𝐴 ∈ ℳ𝑛(𝔽) is self-adjoint (𝐴∗ = 𝐴). The following are equivalent:

a) 𝐴 is positive semidefinite.

b) All of the eigenvalues of 𝐴 are non-negative.

c) There is a matrix B ∈ ℳ𝑛(𝔽) such that 𝐴 = 𝐵∗𝐵, and

d) There is a diagonal matrix 𝐷 ∈ ℳ𝑛 ℝ with non-negative diagonal entries and 

a unitary matrix 𝑈 ∈ ℳ𝑛(𝔽) such that 𝐴 = 𝑈𝐷𝑈∗.

Characterization of Positive Semidefinite Matrices
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Quadratic Form
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Theorem

Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix. Then a quadratic form 𝑥𝑇𝐴𝑥 is:

• positive definite if and only if the eigenvalues of 𝐴 are all positive;

• negative definite if and only if the eigenvalues of 𝐴 are all negative;

• indefinite if and only if 𝐴 has both positive and negative eigenvalues;

❑ How about semidefinite?



Positive Definite Tests
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Five tests to see whether a matrix is positive definite or not:

1. 𝑥𝑇𝐴𝑥 > 0 for all 𝑥 (other than zero-vector)

2. If 𝐴 is positive definite, 𝐴 = 𝑆𝑇𝑆 (𝑆 must have independent columns.)

3. All eigen values are greater than 0

4. Sylvester’s Criterion: All upper left determinants must be > 0.

5. Every pivot must be > 0

Positive Definite Matrices
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Note

A positive definite matrix 𝐴 has positive eigenvalues, positive pivots, positive 

determinants, and positive energy 𝑣𝑇𝐴𝑣 for every vector 𝑣. 𝐴 = 𝑆𝑇𝑆 is always positive 

definite if 𝑆 has independent columns.



❑ Proof?

Positive Definite Matrices
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Theorem

If 𝑆 is positive definite 𝑆 = 𝐴𝑇𝐴 (𝐴 must have independent columns): 𝐴𝑇𝐴 is 

positive definite iff the columns of 𝐴 are linearly independent.

For positive definite matrices we had:

• If 𝐴 is positive definite, 𝐴 = 𝑆𝑇𝑆 (𝑆 must have independent columns.)



Positive Definite Matrices
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Theorem

If a matrix is positive definite, then its eigenvalues are positive.

For positive definite matrices we had:

• All eigen values are greater than 0

Theorem

If a matrix has positive eigenvalues, then it is positive definite.

❑ Proof?

• Proof?



Positive Definite Matrices
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For positive definite matrices we had:

• Sylvester’s Criterion: All upper left determinants must be > 0.

𝐴 =
2 −1 0
−1 2 −1
0 −1 2

Theorem

If a matrix is positive definite, then it has positive determinant.

Proof?



Sylvester’s Criterion
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Theorem

Then 𝐴 is positive definite if and only if, for all 1 ≤ 𝑘 ≤ 𝑛, the determinant of the top-left 𝑘 × 𝑘
block of 𝐴 is strictly positive.

Proof?



❑ A principal minor of a square matrix is the determinant of a 
submatrix of 𝐴 that is obtained by deleting some (or none) of its 
rows as well as the corresponding columns.

❑ A matrix is positive semidefinite if and only if all of its principal 
minors are non-negative.

Sylvester’s Criterion for Positive Semidefinite Matrices
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𝐵 =
𝑎 𝑏 𝑐
ത𝑏 𝑑 𝑒
ҧ𝑐 ҧ𝑒 𝑓

are 𝑎, 𝑑, 𝑓, det(𝐵) itself, as well as

𝑑𝑒𝑡
𝑎 𝑏
ത𝑏 𝑑

= 𝑎𝑑 − 𝑏 2 𝑑𝑒𝑡
𝑎 𝑐
ҧ𝑐 𝑓 = 𝑎𝑓 − 𝑐 2 𝑑𝑒𝑡

𝑑 𝑒
ҧ𝑒 𝑓

= 𝑑𝑓 − 𝑒 2



Pivots & Positive Definite Matrices
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Theorem

If a matrix has positive pivots, then it is positive definite.

Proof?



Properties
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Important

• If 𝐴 is positive definite, 𝐴−1 will also be positive definite.

• If 𝐴 and 𝐵 are positive definite matrices, 𝐴 + 𝐵 will also be a positive 

definite matrix.

• Positive definite and negative definite matrices are always full rank, and 

hence, invertible.

• For 𝐴 ∈ ℝ𝑚×𝑛 gram matrix is always positive semidefinite. Further, if 𝑚
≥ 𝑛 (and we assume for convenience that 𝐴 is full rank), then gram 

matrix is positive definite.



Properties
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Important

Suppose 𝐴, 𝐵 ∈ ℳ𝑛 are positive (semi)definite, 𝑃 ∈ ℳ𝑛,𝑚 is any matrix, and 𝑐 > 0

is real scalar. Then

a) 𝐴 + 𝐵 is positive (semi)definite.

b) 𝑐𝐴 is positive (semi)definite.

c) 𝐴𝑇 is positive (semi)definite, and

d) 𝑃∗𝐴𝑃 is positive semidefinite. Furthermore, if 𝐴 is positive definite then 𝑃∗𝐴𝑃 is 

positive definite if and only if 𝑟𝑎𝑛𝑘 𝑃 = 𝑚.



Gram Matrix
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Gram(A) : 𝐴𝑇𝐴

❑ symmetric 

❑ non-negative eigenvalues

❑ real eigenvalues

❑ orthonormal eigenvectors

❑ positive semi-definite

Gram Matrix
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Proof?
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